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Exact solution of a coagulation equation with removal term 
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West Germany 

Received 13 February 1984 

Abstract. Smoluchowski's coagulation equation with coagulation rate K,,  Cc ij for the 
process A, +A, + A,,, is solved in the presence of a removal term of the general form 
- n ( t ) c ,  - b( f )kc , .  The solution for the monomer initial condition has the same k-depen- 
dence as in the case without sinks, but for b > bo > 0 the solution never reaches the gelation 
transition. 

1. Introduction 

In recent years, Smoluchowski's coagulation equation 
a- 

describing the time evolution of the size distribution c k (  t )  in coagulating or polymerising 
systems has been extensively studied. The coagulation rate for the clustering process 
A, +AJ + A , ,  equals K,J. 

For high enough rates, the solution of (1) describes a phase transition (gelation), 
signalled by the divergence of some moment of the size distribution at a definite 
(critical) point. This happens e.g. when K ,  = slsJ, with s k  - k" ( k  + CO), iff w > f (Leyvraz 
and Tschudi 1981, Hendriks et a1 1983). Although equation (1) describes a kind of 
mean field theory, spatial fluctuations being neglected, for w # 1 non-classical critical 
exponents are found. 

Polymerising systems with f-functional monomeric units in the non-cyclic approxi- 
mation are modelled by the choice s k  =(f -2)k+2 (Stockmayer 1943, 1944, Ziff and 
Stell 1980). The solution of (1) for the monomer initial condition C k ( 0 )  = 8 k i  is then 
equivalent to the Flory-Stockmayer classical theory of gelation, at least in the sol 
phase ( t  < t c ) .  The critical point is at t = t ,  = [f(f- 2)]-' (Ziff and Stell 1980) and is 
characterised by classical, critical exponents. 

In the high functionality limit, f+ CO, one may use f ' t  as a new time variable and 
K ,  reduces to 6. The solution of the resulting equation contains the full gelation 
transition. This case lends itself as an instructive example, as the mathematics is not 
too technical, and the solution has been analysed in great detail (Ziff et a1 1983). Also, 
experiments have been performed at high functionality (von Schulthess et a1 1980). We 
quote the solution for the monomer initial condition valid in the sol phase ( t  s t ,  = 1) 
(Stockmayer 1944) 

C k ( t ) = ( k t ) k - '  e - k ' / k k ! .  (2) 
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The solution of (1) in the gel phase ( t  2 t , )  equals C k ( t , ) / t  (Leyvraz and Tschudi 1982, 
Ziff et a1 1983). It describes a situation without sol-gel interaction. If one insists on 
(2) being valid also in the gel phase, then (1) has to be modified past the gel point 
through the addition of a term (XT=l jc, - l)kck. The factor inside the brackets is to be 
interpreted as the negative of the gel fraction G ( t )  (Ziff et al 1983). 

In this paper we derive the exact solution of equation (1) with K,j = ij in the presence 
of a removal (sink) term of the general form: 

s=-U( f )Ck-b ( f )kCk  (3) 

in which a and b are arbitrary functions of time. The term -ack arises when material 
is allowed to flow out of the system at a steady rate, through a leak or a pipe. The 
term -bkck describes a removal process that acts more effectively for larger clusters. 
Such a term arises when, e.g. already at t = 0, gel is present in a polymerising system. 
For coagulation, the structure of removal terms corresponding to various processes 
have been given by Crump and Seinfeld (1981). It is of interest to investigate the effect 
of such terms on properties of the solution, such as critical exponents, the occurrence 
of gelation and so on. When also a source is present, there is the possibility of a steady 
state. Criteria on the asymptotic behaviour of K ,  and the source and sink terms, to 
ensure the existence of such a steady state, have been derived (Crump and Seinfeld 
1982, White 1982). For w = 1 ,  source dependent critical exponents have been found 
(Hendriks and Ziff 1984). 

In the present case, with K,, = ij and (3) describing the removal process, an explicit 
form of solution can be found. It will follow that when b( t )  > bo > 0, the solution never 
reaches the phase transition, the removal process being too strong. 

2. The solution 

The equation to be studied reads: 

in which U and b are arbitrary, given, non-negative functions of time. The solution 
can be constructed with the help of the generating function: 

The actual derivation is given in the appendix. For the monomer initial condition, 
Ck(0) = & I ,  the result can be written in the form 

(6) 

which has the same k-dependence as equation (2), the solution valid in the absence 
of removal terms. For k + CO it takes the asymptotic form: 

C k ( t )  = (2 ,p2r( t )  ekxo(r)k-5’2 

ck( t )  = r( t ) [ l (  f ) l k (  kk-*/ k !) 

( k  + 00) (7) 

the same kind of behaviour as is found in the classical Flory-Stockmayer theory of 
gelation or in random percolation on a Bethe lattice. The quantity x o ( t )  ( S O )  represents 
the time dependent position of the leftmost singularity of f ( x ,  t ) .  Only when x o ( t )  = 0 
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at some point, the solution describes gelation. The time dependent functions r(t) and 
l ( t )  depend on the functions a ( t )  and  b(t) ,  in a complicated manner: 

I rr 
r( t )  = exp(-A( t’)) d t ’  / Jo 

with A( t) = j: a (  t ’ )  dt’, and 

) i ( t )  = lof exp(-A( t ’ ) )  dt’/exp( lof ( M (  t ’ )  + b( t’)) d t ’  

in which M ( t )  is the (sol) mass present in the system: 
X 

M (  f) = f ( o ,  f )  = kCk( f ) .  
k = l  

(9) 

An explicit form of M ( t )  in terms of a and b cannot be given, but rather a differential 
equation that it satisfies which using the variables p = e A M  and T = ji  exp(-A( t ’ ) )  dt’ 
attains the form 

/ i = p ( / i ~ -  b). (11)  

If one is interested in the precise time evolution of the ck(t), ( 1  1) may be solved 
numerically, with the initial condition p(0 )  = 1 .  

3. Discussion of the solution 

As has been mentioned, solution (7) has, as far as the k-dependence is concerned, the 
same structure as in the classical theory of gelation. Does it also describe a gelation 
transition? To answer this question, we consider the mean cluster size, or the second 
moment of the size distribution: 

X 

M2(t) = c k2Ck(t) =f , (o ,  t, 
k = l  

which can be calculated from the solution (see appendix): 
-I 

M2( t )  = M (  1 - M eA(‘) lof e-A(t’) dr’) = e-Ap(  1 - p ~ ) - ’ .  (13) 

Gelation would happen at a point for which p ( f ) T ( f )  = 1, since then the second moment 
diverges. However, for b > bo> 0 this is impossible, as follows directly from (1 l),  
which leads to an inconsistency if one assumes p(t)T(t)= 1 at some value of t. 

Alternatively, one may consider the motion of the singularity x o ( t ) .  It follows from 
(6 ) ,  with the help of the ratio test, that exo = 5 e-’ and  hence from (9) and the definitions 
of p and T we have 

(14) 

Gelation corresponds to xo( t )  hitting the origin, for which it is necessary that p( t ) T (  t )  = 
1. This shows that no moment diverges at all if b > bo > 0. 

Thus, the sink term -bkck causes the solution to stay away from the gelation 
transition. For the same reason, when in the absence of sources and sinks (1 1) the gel 
is allowed to interact with the sol which corresponds to adding a term of the form 

x,( t )  = pr - 1 +log(pT). 
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-bkck the size distribution has an algebraic tail k-"* only at the critical point t ,  
exactly, whereas beyond t, it is again dominated by exponential decay, as in (7 ) .  

For b > bo > 0, the singularity xo( t)  moves from xo = CO at t = 0 towards a minimum 
value and then back to xo = 00 again. Its precise motion depends on a( t )  and b( t )  via 
the solution of (1 1). 

For b = 0, the solution (6) reduces to (2) with t simply replaced by T. This case 
need not be analysed, as it is fully equivalent to ( 1 )  with K ,  = ij, the solution of 
which has been treated in detail (Ziff et a1 1983). The sink term can be transformed 
away by passing to T as the new time variable. For the monomer initial condition, the 
critical point now lies at the solution of the equation T( t )  = exp(-A( t')) d t '  = 1, which 
only exists if T(CO) > 1, i.e. when the removal process is not too strong. 

Appendix 

We derive the solution of (4). It follows from (4) that the generating function, (9, 
satisfies a nonlinear partial differential equation: 

J = ff - ( M  + blfx - af (All  

in which M depends on f itself 

We treat M first as an arbitrary function and later require the solution to satisfy (A2). 
The inverse function X ( f ,  t ) ,  defined by the relation X(f(x, t ) ,  t )  = x satisfies 

X, - aJX, = -f + M + b. (A3) 

This is a linear PDE and can be solved using the method of characteristics. The solution, 
in terms of an arbitrary function F ( u ) ,  can be written as 

)) 
ex = F(feA'")  exp( Iof dt '  ( M (  t ' )  + b( t ' )  - feA(r)-A'f ' )  

with A( t )  = a( t ' )  dt'. This determines f(x, t )  implicitly. The sol mass M (  t )  follows 
from (A4) by putting x = 0, and requiring (A2) to hold. For the monomer initial 
condition, C k ( 0 )  = & I ,  one hasf(x, 0) = ex, hence F ( u )  = U. The solution then reduces to 

dt'(M(t'"b(t')-feA'''-A'"' ('45) 

and the consistency relation equation (A2) implies 

dt ' (M(t ' )+b"' ) -M(t )eA' ' ' -A'"'  ('46) 

Differentiating this with respect to t yields a differential equation for M, which using 
the variables p = eAM and T = dt '  becomes ( 1  1). The explicit form ( 6 )  can 
be obtained as follows. We introduce auxiliary quantities F,,  F, and z as 

( M (  t ' )  + b( t ' ) )  dt '  ('47) 
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F2 = e A(r) lof exp(-A(t')) d t '  

z = e x  (A9) 

z = f ~ ,  (A 10) 

such that the solution equation (A5) can be written as 

The fact that f is the generating function of the quantities kck implies 

in which the integration path is a closed contour around z = 0. This remains so if we 
change to the new integration variable 5 =fF2, where f is related to z via (A10). One 
finds 

which completes the derivation of equation (6). Expression (13) for M2( t )  follows 
from differentiating (A5) with respect to x and substituting x = 0, using (A6). 
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